

Supported by

NSTX Run Planning Overview: CY11-FY12

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

V1.1

S.A. Sabbagh (Run Coordinator) Columbia University M.G. Bell (Deputy) Princeton Plasma Physics Laboratory

NSTX FY2011-12 Research Forum March 18th, 2011 PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Your hard work has made the 2011-12 research forum a success

Thanks to the hard work of many people

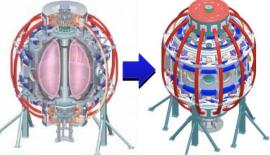
- Jon Menard for organizing the meeting
- A/V crew Larry Nixon, Bob Reed, Carl Scimeca
- Logistics Joanne Savino, Carol Ann Austin
- Refreshments Masa Ono and Joanne
- Presenters of plenary talks from other labs Brian Lloyd (MAST), Earl Marmar (C-Mod), Rob La Haye (DIII-D)
 - Especially important guidance for collaboration during outage
- TSG leaders and deputies who led the breakout sessions and prepared summaries

Record number of proposals submitted

- 195 XPs/XMPs were considered, totaling ~ 248 days requested
 Almost exactly 3 times oversubscribed
- TSG leaders have provided their group prioritization <u>GOOD WORK</u>!

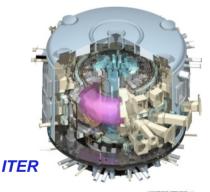
NSTX advances toroidal plasma science, burning plasma physics, and supports attractive near-term fusion options

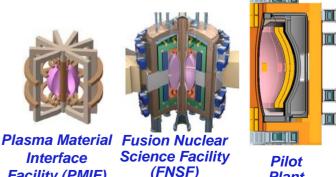
Understand/exploit unique ST parameters


- High heat flux for novel divertor and PMI studies
- Low A, I_i and high β , κ , v_{fast}/v_A for stability, transport
- Role of NSTX Upgrade:
 - Prototype methods to mitigate very high heat/particle flux
 - Study high beta plasmas at reduced collisionality
 - Access full non-inductive operation for FNSF applications

Extend understanding of tokamak / ITER

Develop predictive capability for ITER/FNSF/Demo


Establish attractive ST operation


- Utilize ST to close key gaps to Demo
- Advance ST as fusion power source

NSTX

NSTX-L

Facility (PMIF)

Plant

Brief summary of NSTX Milestones – key guidance for TSG XP prioritizations – FY2011

- 2011 OFES Joint Research Milestone (Boundary Physics, Transport & Turbulence)
 - Improve understanding of physics mechanisms responsible for pedestal structure, compare with the predictive models.
 - Perform detailed measurements of the height and width of the pedestal, E_r, initial measurements of pedestal region turbulence.
 - Perform focused analytic theory and computational effort, including large-scale simulations, on physics controlling pedestal structure, height. Predictive models will be developed, with key features tested against observations.
- R(11-1): Measure fluctuations responsible for turbulent electron, ion and impurity transport
 - □ TSGs: Transport & Turbulence
- R(11-2): Assess ST stability dependence on plasma aspect ratio and boundary shaping
 - TSGs: Macrostability, Advanced Scenarios and Control
- □ R(11-3): Assess very high flux expansion divertor operation
 - **TSGs:** Boundary Physics, Advanced Scenarios and Control
- R(11-4): H-mode pedestal transport, turbulence, and stability response to 3D fields
 - **TSGs:** ITER/CC, Transport & Turbulence, Boundary Physics, Macrostability

Brief summary of NSTX Milestones – key guidance for TSG XP prioritizations – FY2012

2012 OFES Joint Research Milestone (Transport & Turbulence)

- Improve understanding of core transport and enhanced capability to predict core temperature and density profiles.
- Assess the level of agreement between theoretical / computational transport models and available experimental measurements of core profiles, fluxes and fluctuations.
- Emphasize simultaneous comparison of model predictions with experimental energy, particle and impurity transport levels and fluctuations in various regimes, including regimes with significant excitation of electron modes.
- R(12-1): Investigate the relationship between lithium-conditioned surface composition and plasma behavior.
 - **TSGs:** Lithium research, Boundary Physics, Advanced Scenarios and Control
- R(12-2):Assess confinement, heating, and ramp-up of CHI start-up plasmas
 - TSGs: Solenoid-Free Start-up, Wave-particle Interactions, Advanced Scenarios and Control
- R(12-3): Assess access to reduced density and collisionality in high-performance scenarios
 - **TSGs:** Advanced Scenarios and Control, Macro-Stability, Boundary Physics
- Incremental
 - IR(12-1): Investigate magnetic braking physics and develop toroidal rotation control at low collisionality (Macrostability and Advanced Scenarios and Control)
 - □ IR(12-2): Assess predictive capability of mode-induced fast-ion transport (WEP TSG)

WNSTX

Run Time Guidance for the FY2011-12 Run

- □ FY2011-12 run-time allocation: 24 run weeks (120 run days)
- □ 15 days for operational cross-cutting, calibrations, conditioning, etc. → 105 run days
- □ 2 days for program reserve \rightarrow 103 run days
- □ Subtract FY11 time used in CY10 \rightarrow 82 run days
- Add 4 run days for TSGs that have a JRT
 - WEP has one less day since milestone is shared
- FY11/FY12 run days split based on # of milestones in each year
- □ 1st priority experiments given 75% of total

Standard disclaimer: TSG's are NOT guaranteed to receive the full allocation indicated; Actual FY12 allocation may be re-evaluated at mid-run assessment.

Run-time guidance for CY2011-FY2012 run was given, so, how did we do?

Run time guidance for experiments and proposal stats (CY2011 & FY2012)

Topical Science Group	Milestones	FY11 1st priority XPs	FY11 2nd priority XPs	FY12 1st priority XPs	FY12 2nd priority XPs	FY11+12 total run days	XPs (+XMPs) submitted	Run days requested	TSG met total run time guidance
Advanced Scenarios and Control	R12-3	3.0	1.0	4.0	1.5	9.5	23	22.0	YES
Boundary Physics	FY11 JRT, R11-3	7.0	2.5	3.0	1.0	13.5	28	35.5	YES
ITER urgent needs & cross-cutting	R11-4	4.0	1.0	2.5	1.0	8.5	44	74.0	YES
Lithium Research	R12-1	3.0	1.0	5.0	1.5	10.5	17	19.0	YES
Macroscopic Stability	R11-2	5.5	1.5	3.5	1.0	11.5	22	23.5	YES
Solenoid-free Start-up & Ramp-up	R12-2	3.0	1.0	4.0	1.5	9.5	8	17.5	YES
Transport and Turbulence	FY12 JRT, R11-1	4.0	1.0	4.0	1.0	10.0	24	29.0	YES
Waves and Energetic Particles	R12-2 (w/ SFSU)	3.0	1.0	4.5	1.5	10.0	29	27.0	+0.5 FY11 P1
Total		32.5	10.0	30.5	10.0	83.0	195	247.5	

- Record number of proposals
- Requested run days outpaced available days by factor of 3
- **TSGs were either very close to meeting, or met run time guidance**
 - Slight (up to 0.5 day) mis-alignment of FY12 1st and 2nd priority not an issue some shuffling may be required at mid-run assessment
 - □ WEP TSG is +0.5 days on their FY11 1st priority XPs (but total # days ok)

WELL DONE !! ... but did we break the bank on operational cross-cutting & enabling?....

Operational cross-cutting and enabling time is close to being filled, but we came in just under guidance

Operational Cross Cutting & Enabling (CY2011 & FY2012)

Operational CC & enabling	Guidance	Assigned	
Characterizing incremental Li		_	
introduction + possible boronization	2	2.0	Supplement Li introduction time + XMP for Li de-conditioning (LRTSG)
Mo tile performance characterization	2	1.0	Supplement Mo tile performance characterization (LRTSG)
		1.0	t-FIDA commissioning (WEP) (WPI-28 Bortolon)
Control system development	3	1.0	Ramp-down development (ASC)
		0.5	rt-Vphi checkout (ASC)
		0.5	n = 1 feedback check/optimization (ASC)
Calibration: magnetics, MSE, other	2	2.0	locked
HHFW conditioning	4	4.0	Assigned to WEP TSG (WPI-29 Hosea)
Other XMP TBD	2	1.0	Control early MHD (MS) - for low ne startup / low nu (R12-3) milestone*
		1.0	WEP TSG (WPI-5 Hosea) - for HHFW/NBI plasma development*
Total CC & enabling (days)	15.0	14.0	

Time allotted closely follows initial guidance from program
 Program reserve (2 days) was not used

One day (of 15) still available (tight!)

Assigned time targeted work enabling the team - open for discussion

"*" refers to enabling work partially addressing a flagged "group task"...

What do we do next in run development? Suggest brief, focused meetings to define plan for certain group tasks

- Tasks identified during research forum that would benefit from further planning (and why)...
 - Development of low density startup (to reduce collisionality, help fulfill R(12-3) milestone
 - Several proposals of varying scope (from tactical to strategic)
 - <u>Grouped by ASC TSG</u> suggest that further discussion be had to define combined proposals, including Mueller (main XP lead, now on vacation)
 - 2. Development of HHFW+NBI operation for group use
 - Supports NSTX physics XPs over the broader group L-mode, H-mode, with high NBI power (> 2 MW), etc.
 - Several XPs discussed, <u>grouped by WEP TSG</u>, discussion also in ASC, specialized forum session for HHFW + CHI coupling work
 - Should hold a team-wide discussion of the group needs, and a discussion of the run plan including input from the broad research team
 - 3. Other, similar broader group meeting needs?

e.g. LRTSG run plan for Li introduction to CY2011 machine, moly tiles?

Pre-run preparation and considerations

- Present best guidance for start of run: Plasma ops July 5th
 - ISTP to be held the week before (NOTE: which is EPS week)
 - It's really NOT that far away, so start prep soon!
- Many new control / diagnostic capabilities
 - Set schedules to be ready for run, ensure that piggyback tests don't conflict, ensure new/modified capabilities/diagnostics are ready to support your XP.
- Present plan is to operate with Li immediately
 - No significant operations phase without Li / no early boronization
 - Controlled Li introduction XP and planned XP for operation on moly tiles (LRTSG)
 - These XPs need to be reviewed soon
 - If no special meeting is held to discuss XPs, LRTSG reviews should be announced to / attended by broad team to allow expanded discussion
- □ Can your XP run early?
 - Early run plasma performance is uncertain we need primary XPs and backups

TSGs should start XP reviews right away, when possible

Strawman start-up run plan and considerations

□ Fast shot cycle (10 mins) – session leader needs help!

We request a <u>deputy session leader</u> be identified in XP document – especially important for complex XPs, complicated control needs, etc.

Strawman start-up run plan

- Pump-down
- □ Bake-out for 3 weeks at 350°C; cool-down
- Power testing ISTP vacuum shots, magnetics calibration shots, etc.
- First plasma operations right after ISTP, quickly transition into LRTSG experiments
 - Controlled lithium introduction and discharge development (Maingi)
 - Comparison of diverted plasmas on incident lithiated moly (Kugel)
- □ Enabling / commissioning XPs follow, start some JRM XPs if all is ready
 - (ASC) Vertical control improvements (SPG), snowflake control (Kolemen)
 - (WEP) t-FIDA commissioning (Bortolon) if impurity levels sufficiently low
 - (BP) Start snowflake Xp (Vlad) OR d/Bt effect on pedestal ELM-y H (Diallo)
 - Follow with mix of higher performance enabling XP work, 1st priority mix of TSGs
- Piggyback testing of new control for 2nd SPA, checkout of new / expanded diagnostics whenever possible during this time

□ What's so special?

It's pre-run preparation for NSTX-U

- Several milestones / XPs focus on prep work for the upgrade
- The upgrade targets a new operational space for the ST which we must demonstrate will perform well (major responsibility)
- It's our opportunity to solidify the legacy of NSTX
 - The device is still INCREASING productivity, INCREASING diagnostics, INCREASING research publications

It's the Team

Look around you. This is the best team that NSTX has ever seen.

